LOCKS AND HIGH SECURITY: THE MEDECO CASE STUDY

Cracking One of the Most Secure Locks in America

Lessons learned from embedded design deficiencies, a failure of imagination, a failure to connect the dots, and a belief in invincibility

HIGH SECURITY LOCKS

- PROTECTION OF HIGH SECURITY FACILITIES
 - Critical infrastructure
 - Airports and transportation
 - Public Safety
 - Information
- ♦ HIGH SECURITY REQUIREMENTS
 - Key control
 - Covert and Surreptitious entry
 - Forced entry

LOCKS: FIRST LINE OF DEFENSE

- PHYSICAL SECURITY AND I-T INTEGRATION
- ♦ CONVENTIONAL V. HIGH SECURITY LOCK
- ♦ ELECTRONIC ACCESS CONTROL ISSUES
- RELIANCE ON STANDARDS
- ♦ RESULTS IF FAILURE OF SECURITY
 - Criminal activity, theft, collusion
 - Sabotage, unauthorized access
 - Compromise of information
 - Destruction of evidence

SECURITY SYSTEMS: LOCKS

♦ RESTRICT ACCESS

♦ TRACK PEOPLE AND THEIR ACCESS

TRACK ENTRY AND ATTEMPTS

CRITICAL QUESTIONS

- ♦ WHAT IS SECURITY RE LOCKS
- ♦ IS IT SECURE ENOUGH
- WHAT DOES A HIGH SECURITY RATING MEAN
- CONCEPT OF KEY CONTROL, KEY SECURITY, AND WHY IMPORTANT
- CAN THE LOCK BE COMPROMISED AND HOW DIFFICULT
- ♦ REAL WORLD THREATS
- ♦ METHODS TO COMPROMISE AND BREAK

LOCKS AND SYSTEMS: CATEGORIES • CONVENTIONAL LOCKS • HIGH SECURITY LOCKS • ELECTRONIC ACCESS CONTROL

MEDECO: WHO ARE THEY?

- Dominant high security lock maker in U.S.
- Owns 70+ Percent of U.S. high security market for commercial and government
- Major government contracts
- ♦ In UK, France, Europe, South America
- Relied upon for highest security everywhere
- Considered almost invincible by experts
- Not easily compromised for 40 years

WHY THE MEDECO CASE STUDY IS IMPORTANT

- Insight into design of high security locks
- Patents are no assurance of security
- Appearance of security v. Real World
- Undue reliance on Standards
- Manufacturer knowledge and Representations
- Methodology of attack
- More secure lock designs

MODERN PIN TUMBLER

HIGH SECURITY LOCKS: Why Important?

- Protect high value targets
- Stringent security requirements
- High security Standards: UL, BHMA
- Threat level is higher
- Minimum security criteria
 - Attack times and resistance
 - More difficult to compromise

STANDARDS: THE PROBLEM

- WHAT DO THEY MEASURE?
- ♦ WHY WE NEED STANDARDS
- NOT REAL WORLD
- ♦ LIMITED TESTING, FEW TESTS
- ♦ MECHANICAL BYPASS
- ♦ SPECIAL ATTACK TECHNIQUES
- ♦ BUMPING

STANDAFORDS: CRITERIA

COVERT ENTRY
FORCED ENTRY
KEY CONTROL

COVERT ENTRY PROTECTION: The Theory

- MINIMUM SECURITY CRITERIA IN UL 437 and BHMA/ANSI 156.30
- PROTECT AGAINST CERTAIN FORMS OF COVERT ENTRY
- ASSURE MINIMUM RESISTANCE TIMES TO OPEN: 10-15 Minutes
 - Picking, Decoding
 - Bumping (not covered)
 - Decoding and Master Key attacks

FORCED ENTRY PROTECTION: UL 437 and BHMA 156.30 Standards ♦ LOCKS ARE SECURE AGAINST FORCED METHODS OF ATTACK ♦ MINIMUM TIMES SPECIFIED IN UL 437 and BHMA/ANSI 156.30 - ATTACK RESISTANCE: 5 MINUTES DOES NOT INCLUDE MANY METHODS OF ATTACK

PHYSICAL SECURITY: LEGAL REQUIREMENTS SARBANES OXLEY (2002) OTHER STATUTORY REQUIREMENTS HIPPA

- PROTECTION OF INFORMATION
- SANCTIONS FOR VIOLATION

ATTACK METHODOLOGY FOR HIGH SECURITY LOCKS

- Assume and believe nothing
- Ignore the experts
- Think "out of the box" and "inside the lock"
- Consider prior methods of attack
- Always believe there is a vulnerability
- WORK THE PROBLEM
 - Consider all aspects and design parameters
 - Do not exclude any solution
 - Connect the dots

METHODS OF ATTACK: High Security Locks

- Picking and manipulation of components
- Impressioning
- *Bumping
- *Vibration and shock
- *Shim wire decoding (Bluzmanis and Falle)
- *Borescope and Otoscope decoding
- *Direct or indirect measurement of critical locking components
- *Mechanical bypass
 - * Not covered by UL or BHMA standards

ATTACKS: Two Primary Rules

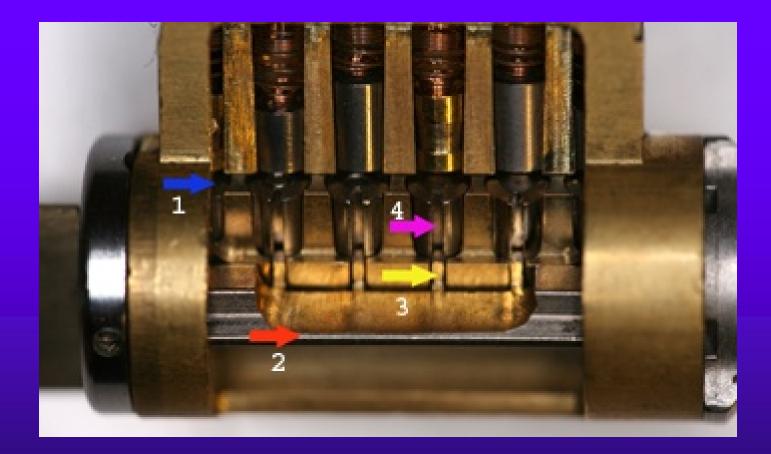
- - Mechanical bypass
- Alfred C. Hobbs: "If you can feel one component against the other, you can derive information and open the lock."

HIGH SECURITY LOCKS: Critical Design Issues

- Multiple security layers
- More than one point of failure
- Each security layer is independent
- Security layers operate in parallel
- Difficult to bypass each layer
- Difficult to derive intelligence about a layer
- Difficult to simulate the action of the key

MEDECO HIGH SECURITY: What it means

- ♦ UL, BHMA/ANSI, Vd.S Certified
- High level of protection against attack
- Picking: 10-15 minute resistance
- No bumping
- Forced Entry: 5 minutes, minimum
- Key control
 - Protect restricted and proprietary keyways
 - Stop duplication, replication, simulation of keys
 - If keys can be replicated: no security


MEDECO LOCKS: 3 Independent Security Layers ◆ Layer 1: PIN TUMBLERS to shear line ◆ Layer 2: SIDEBAR: 3 angles x 2 positions ◆ Layer 3: SLIDER – 26 positions ◆ TO OPEN:

- Lift the pins to shear line
- Rotate each pin individually
- Move the slider to correct position

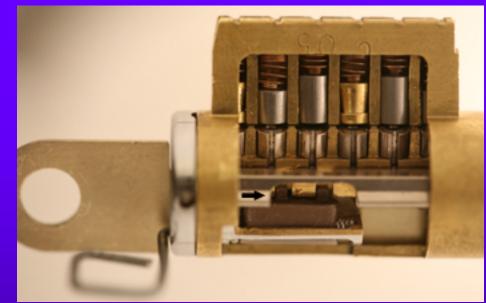
MEDECO TWISTING PINS: 3 Angles + 2 Positions

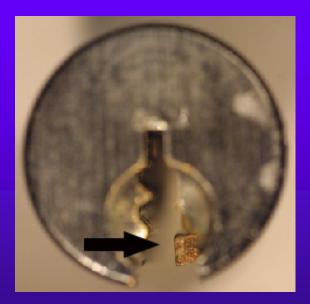
MEDECO BIAXIAL (1985-2003)

SECURITY CONCEPTS: Sidebar IS Medeco Security

- ♦ GM locks, 1935, Medeco re-invented
- Heart of Medeco security and patents
- Independent and parallel security layer
- Integrated pin: lift and rotate to align
- Sidebar blocks plug rotation
- Pins block manipulation of pins for rotation to set angles

PLUG AND SIDEBAR: All pins aligned




PLUG AND SIDEBAR: Locked

MEDECO m3: The Slider (2003)

M3 SLIDER: (Not secure) Bypass with a Paper clip

SECURITY OF m3: High Tech Wire!

MEDECO RESEARCH: WHAT WE DID

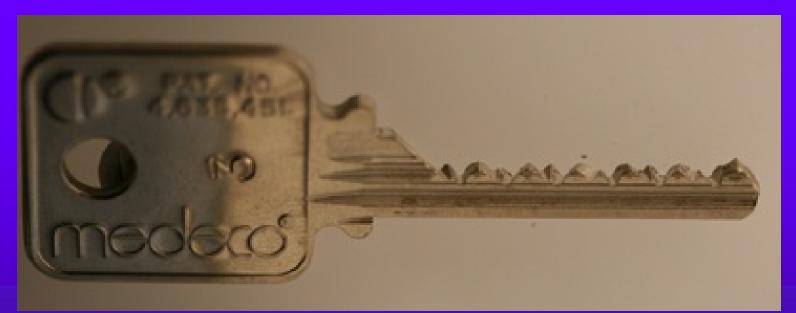
- Exploited design vulnerabilities
- Reverse engineer sidebar codes
- Analyze what constitutes security in layers
- Analyze critical tolerances
- Analyze key control issues
- Analyze design enhancements for new generations of locks: Biaxial, m3, and Bilevel
- Develop two new concepts

MEDECO INSECURITY: Real World Threats - Covert • PICKING AND BUMPING

- With correct blank and sidebar code
- With simulated blank
- With or without ARX pins
- ♦ INSIDE ATTACKS
 - Change key picking
 - Keymail
- MASTER KEY ATTACKS
- VISUAL DECODING

MEDECO INSECURITY: Real World Threats – Forced ◆ DEADBOLT Pre-12/2007 - Thirty seconds Complete circumvention of security – Simple tools, easy to accomplish DEADBOLT 2008 - Reverse picking attack ◆ MORTISE, RIM, ICORE – Hybrid attack, compromise of key control

MEDECO INSECURITY: Real World Threats - Keys VIOLATION OF KEY CONTROL and KEY SECURITY


- Compromise of entire facility
- Improper generation of keys
- Use to open locks
- Decode Top Level Master Key
- Forced and covert entry techniques

CODE SETTING KEYS: Four Keys to the Kingdom

MEDECO BUMP KEY

REAL WORLD ATTACK: Bumping a Medeco Lock

BUMPING + 4 ARX PINS

DEFEONTE AUCUSTIO, 2008 Bumping Medeco ARX Pins Gizos Marc Weber Tobles

PICKING A MEDECO LOCK

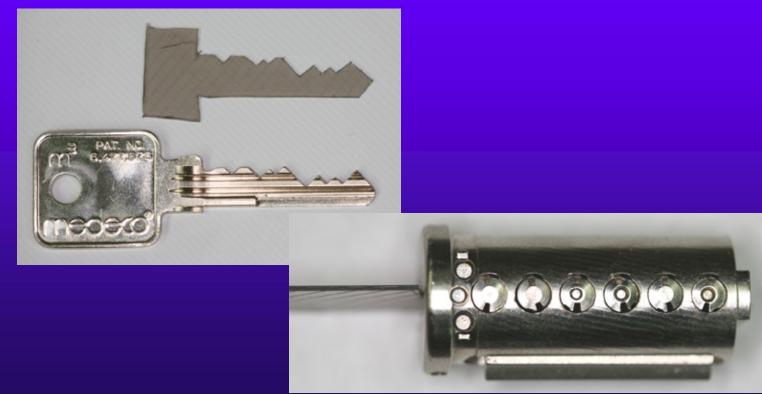
MEDECO PICKING: OPEN IN 23 SECONDS

RESULTS OF PROJECT: Forced Entry Techniques

- Deadbolt attacks on all three versions
 - Deadbolt 1 and 2: 30 seconds
 - Deadbolt 3: New hybrid technique of reverse picking
- Mortise and rim cylinders
 - Prior intelligence + simulated key
- Interchangeable core locks

MORTISE ATTACK: Sources of Key Data

- Copy machine
- ♦ Scanner
- Cell phone camera
- Plastic sheets: Shrinky Dink
- ♦ X-acto knife


SET THE SHEAR LINE: OPEN THE LOCK

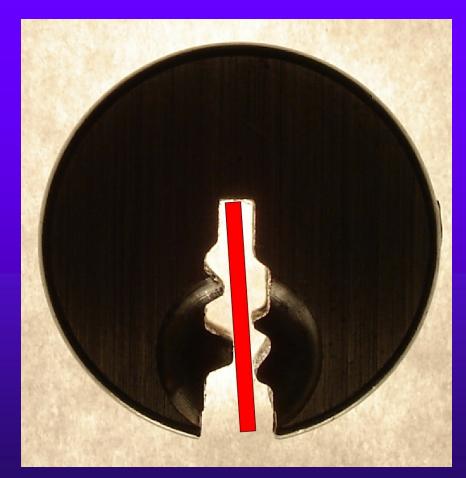
SET THE SHEAR LINE

PLASTIC KEY SETS SHEAR LINE SIDEBAR IS IRRELEVANT

MORTISE ATTACK

KEYS and KEY CONTROL

- KEYS ARE THE EASIEST WAY TO OPEN LOCKS
 - Change key or master key
 - Duplicate correct bitting
 - Bump keys
 - Rights amplification: modify keys
- PROTECTION OF KEYS
 - Side bit milling: Primus and Assa
 - Interactive elements: Mul-T-Lock
 - Magnets: EVVA MCS


KEY CONTROL: Why Most Keys are Vulnerable • CONVENTIONAL LOCKS: Single Layer - KEYWAY = KEY CONTROL • LEGAL PROTECTION DOES NOT

- PREVENT REAL WORLD ATTACKS
 - KEYS = BITTING HEIGHT + KEYWAY
 - Bypass the keyway
 - Raise pins to shear line

MEDECO KEY SECURITY: The Problem

- CIRCUMVENTING SECURITY LAYERS
 - Keyways can be bypassed
 - Blanks can be simulated
 - Sidebar codes are simulated
 - Slider can be bypassed
- NO REAL LEGAL PROTECTION EXCEPT FOR M3 STEP

SIMULATED BLANKS: Any m3 and Many Biaxial Locks

SIMULATED BLANKS

COMPROMISE THE SYSTEM: Obtaining the Critical Data • TECHNIQUES TO OBTAIN KEY DATA

- Impressioning methods
- Decoding: visual and Key Gauges
- Photograph
- Scan keys
- Copy machine

"KEYMAIL": The New Security Threat from Within NEW AND DANGEROUS THREAT ♦ THE NEW MULTI-FUNCTION COPIER – It scans, copies, prints, and allows the production of MEDECO keys ♦ DUPLICATE COMPETE KEY – Open the lock ♦ DUPLICATE BITTING – Hybrid attack

KEYMAIL: How It Works for Mortise, IC, and Rim Cylinders ♦ ACCESS TO THE TARGET KEY ♦ CAPTURE AN IMAGE ♦ PRINT THE IMAGE ♦ PRODUCE A KEY ♦ OPEN THE LOCK

PLASTIC KEYS: PROCEDURE

- OBTAIN IMAGE OF THE KEY
 - Scan, copy, or photograph a Medeco key
 - Email and print the image remotely
 - Print 1:1 image on paper or plastic Shrinky Dinks
 - Trace onto plastic or cut out the key bitting
- INSERT KEY INTO PLUG
 - Neutralize three layers of security
 - Produce working key
 - Open Mortise, Rim, IC cylinders

ACCESS TO TARGET KEY

- ♦ BORROW BRIEFLY
- ♦ AUTHORIZED POSSESSION
- ♦ AUTHORIZED USE
- COLLUSION WITH EMPLOYEE WHO HAS ACCESS TO A KEY
- PARKING VALET

CAPTURE AN IMAGE

♦ COPIER

♦ TRACE THE KEY

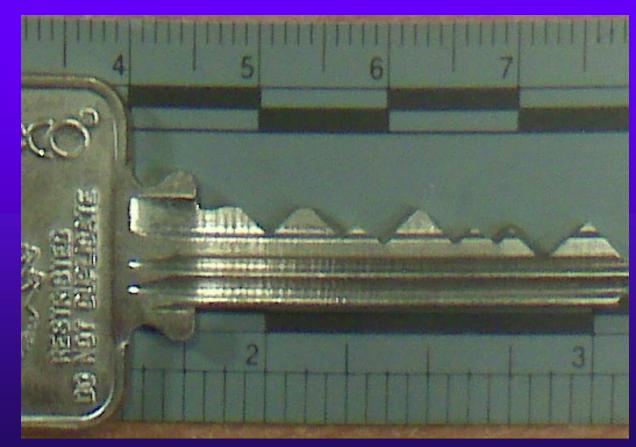
♦ CELL PHONE CAMERA

♦ SCANNER

OBTAIN DATA - COPIER

OBTAIN DATA

♦ SCANNER



OBTAIN DATACELL PHONE

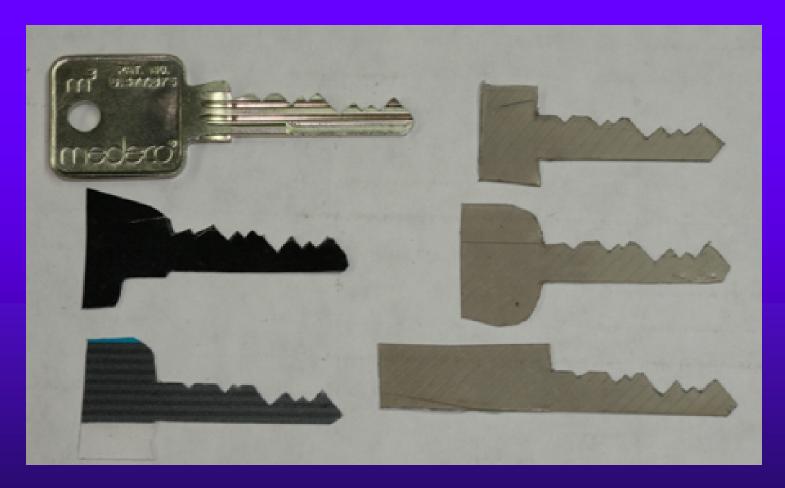
BLACKBERRY CURVE

CAPTURED IMAGE

RESULTING IMAGE

- ♦ REPRODUCE THE IMAGE
 - On Paper
 - On plastic sheet
 - On Adhesive Labels
 - On Shrinky dinks® plastic
 - On a piece of copper wire
 - On a simulated metal key
 - On plastic credit card

PRINT IMAGE ON PLASTIC OR PAPER


CUT A FACSIMILE OF KEY

- ♦ KEY REQUIREMENTS
 - Vertical bitting only
 - No sidebar data
 - No slider data

SET THE SHEAR LINE

OPEN THE LOCK:Replicate the Key in PlasticMEDECO TAKES PLASTIC!

LESSONS TO BE LEARNED

- Patents do not assure security
- Apparent security v. actual security
- 40 years of invincibility means nothing
- New methods of attack
- Corporate arrogance and misrepresentation
- "If it wasn't invented here" mentality
- All mechanical locks have vulnerabilities

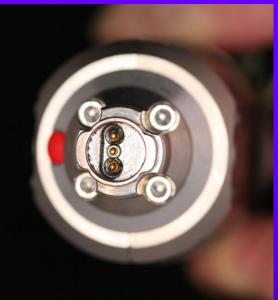
MECHANICAL LOCKS: NOT ENOUGH PROTECTION ♦ GOOD FOR ONE PERSON, ONE KEY ♦ WHERE DON'T NEED TRACKING ♦ ADD DELETE KEYS NOT AN ISSUE ♦ LOST KEYS ♦ COPIED OR STOLEN KEYS

ELECTRONIC ACCESS CONTROL: THE NEW SOLUTION

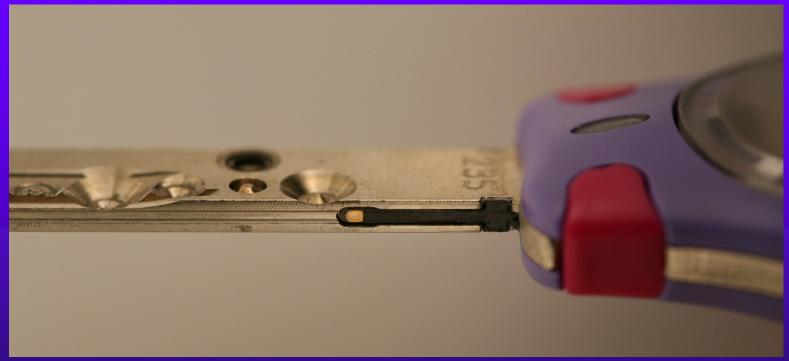
- THE ANSWER TO MECHANICAL LOCKS?
- CURRENT SYSTEMS
 - MECHANICAL + ELECTRONIC
 - ALL ELECTRONIC
 - WIRED
 - DATA ON CARD
 - WIRELESS

LOGIC CYLINDER

MEDECO LOGIC



MEDECO NEXGEN



MUL-T-LOCK CLIQ

POTENTIAL SECURITY VULNERABILITIES?

- BYPASS OF MECHANICAL OR ELECTRONIC SYSTEM
- AUDIT TRAIL DEPENDS ON READING THE KEY
- ♦ WHAT IF ONE LAYER IS BYPASSED

ELECTRONIC ACCESS CONTROL: SERIOUS ISSUES • FALSE SENSE OF SECURITY

- ♦ FALSE BLAME OF EMPLOYEES
- NO EVIDENCE OF ENTRY FOR SECRET INFORMATION
- SECRETS COMPROMISED
- ♦ FALSE SENSE OF SECURITY
- ♦ EVIDENCE: CHAIN OF CUSTODY

OPEN IN THIRTY SECONDS: Cracking one of the most secure locks in America © 2009 Marc Weber Tobias and **Tobias Bluzmanis** www.security.org mwtobias@security.org