INSECURITY ENGINEERING: Analysis of Design Defects

PRESCRIPTION DRUG CONTAINERS

INSECURITY ENGINEERING

DEFICIENT OR DEFECTIVE PRODUCTS

Intersection of mechanical and security engineering

♦ FALSE SENSE OF SECURITY

- What appears secure is not
- How do you know the difference?
- Undue reliance on standards
- ♦ MISREPRESENTATIONS BY MFG

MANUFACTURER RESPONSIBILITIES

- ◆ UNIQUE RESPONSIBILITY FOR COMPETENCE
 - MECHANICAL ENGINEERING
 - SECURITY ENGINEERING
- **♦ IMPLIED REPRESENTATIONS**
 - "WE ARE EXPERTS"
 - SECURITY OF THEIR PRODUCTS
 - REPRESENTATIONS
 - "WE MEET OR EXCEED STANDARDS"

EXPERTISE REQUIRED IN LOCK DESIGN

- ◆ MECHANICAL ENGINEERING
- SECURITY ENGINEERING
- MINIMUM INDUSTRY STANDARDS REQUIRE LEVEL OF KNOWLEDGE
- ◆ SECURITY ENGINEERING REQUIRES:
 - UNDERSTAND USE OF WIRES,
 MAGNETS, PAPERCLIPS, BALL POINT
 PENS, ALUMINUM FOIL....
 - BYPASS TECHNIQUES

ENGINEERING FAILURES: RESULTS AND CONSEQUENCES

- ◆ INSECURITY ENGINEERING
 - Insecure products
 - Often easily bypassed
 - Products look great but not secure
 - False sense of security
 - Drug containers: deadly consequences

COST AND APPEARANCE v. QUALITY AND SECURITY

- ◆ DO YOU GET WHAT YOU PAY FOR?
- ◆ 2\$ LOCKS ARE 2\$ LOCKS!
- SHORTCUTS DO NOT EQUAL SECURITY
- CLEVER DESIGNS MAY REDUCE SECURITY
- PATENTS NOT GUARANTEE
 SECURITY

EXAMPLES: INSECURITY ENGINEERING

- ◆ PRESCRIPTION DRUG SAFES
 - Four models tested, all defective
- ◆ BIOMETRIC FINGERPRINT LOCK
- ♦ ELECTRONIC RFID LOCK
- ◆ CONSUMER ELECTRONIC SAFE
 - All appear secure: None are!
 - This year, focus on wider problem
 - Representative sample

DRUG SAFES: WHY NEEDED

- ♦ 63,000 Opioid deaths last year
- ♦ Access to prescription drugs by kids
- Answer: prevent access
- ♦ Analyzed four major brands: all easily open
 - LockMed
 - Saferlock
 - Pillpod
 - Vaultz

LOCKMED: LOCKED

LOCKMED: UNLOCKED

LOCKMED OPEN

PILLPOD

PILLPOD

PILLPOD OPENING

SAFERLOCK

SAFERLOCK CAP DETAIL

VAULTZ

VAULTZ LOCK OPENING

DRUG CONTAINERS: Opening in seconds

- ♦ All defective designs
- Offer little protection
- Simple locking mechanisms
- ♦ Kids can open
- ♦ Are they better than nothing?
- ♦ False sense of security

TRADITIONAL LOCK DESIGN DEFECTS

- ♦ KWIKSET OLD DESIGN
- ◆ RFID-BASED DEADBOLT
- ♦ ELECTRONIC SAFE
- ♦ FINGERPRINT LOCK

EXAMPLE #1: KWIKSET SMART KEY®

KWIKSET SMART KEY®

- ◆ ABOUT \$2 TO MANUFACTURER LOCKING ELEMENT
- ◆ CLEVER DESIGN: RE-PROGRAMMABLE
- ♦ MILLIONS SOLD EVERY YEAR
- ◆ EXTREMELY POPULAR LOCK
- ◆ HAS BEEN REDESIGNED

KWIKSET ATTRIBUTES

- CLEVER DESIGN
- ◆ PROGRAMMABLE
- COPIED AND MODIFIED EARLIER DESIGNS
- ◆ CANNOT BUMP, BUT NOT DESIGNED TO BE BUMP RESISTANT
- ◆ DIFFICULT TO PICK
- ◆ RATINGS

HOW SMART KEY WORKS

SMARTKEY PRINCIPLE

ADJUSTABLE SLIDERS = KEY BITTING DEPTHS

SLIDERS = SMARTKEY SECURITY

OPEN IN THIRTY SECONDS: SCREWDRIVER + VICE GRIP + KEY

OPEN IN THIRTY SECONDS

EXAMPLE #3: KABA IN-SYNC RFID-BASED LOCK

INSYNC RFID KEY LOCK

KABA IN-SYNC ATTRIBUTES

- WIDE APPLICATOIN
- AVAILABLE FOR SEVERAL YEARS
- MILITARY AND CIVILIAN APPLICATIONS
- ♦ USE SIMULATED PLASTIC KEY WITH RFID
- ◆ AUDIT TRAIL

IN-SYNC INTERNAL MECHANISM: LOCKING

BOLT RETRACTS

TURN TO OPEN

INSYNC-D MARKETS

- **♦** COMMERCIAL
- APARTMENT COMPLEXES
- MILITARY FACILITIES AND HOUSING
- **♦** CHURCHES

INSYNC MEETS PAPERCLIP

KABA INSYNC: INSECURITY 101

EXAMPLE #4: AMSEC ES1014 CONSUMER "SAFE"

ELECTRONIC KEYPAD

AMSEC SAFE ES1014 AND OTHERS

- ◆ CONSUMER LEVEL SAFE
- ◆ \$100 FOR SMALLEST UNIT
- **♦** ELECTRONIC KEYPAD
- ◆ HOW MUCH SECURITY EXPECTED?
- **♦ INCOMPETENT DESIGN**
- ♦ FOUND IN MANY OTHER SAFES
- CHINESE IMPORT

AMSEC: INSECURITY RESET

AMSEC SAFE: INSECURITY 101

FILE FOLDER "SLIM JIM"

FILE THIS UNDER INCOMPETENCE

OPEN SESAME!

EXAMPLE #5: BIOLOCK 333

BIOMETRIC LOCK

- ◆ FINGERPRINT + BYPASS CYLINDER
- **♦ LOOKS SECURE**
- ◆ \$200 OR MORE
- ♦ INSECURITY ENGINEERING AT ITS BEST

BYPASS LOCK = BYPASS SECURITY

PAPERCLIP: HIGH-TECH BYPASS FOR BIOLOCK

LESSONS LEARNED

- ◆ CLEVER ≠ SECURITY
- ◆ LOCKS REQUIRE BOTH MECHANICAL AND SECURITY ENGINEERING
- ◆ PATENTS DON'T GUARANTEE SECURITY
- STANDARDS DO NOT MEAN SECURITY

INSECURITY ENGINEERING: Locks, Lies, and Videotape

© 2019 MarcWeber Tobias, Tobias Bluzmanis, Matthew Fiddler

mwtobias@securitylaboratories.org tbluzmanis@securitylaboratories.org