LOCKS AND HIGH INSECURITY: PROTECTING CRITICAL INFRASTRUCTURE

SECURITY VULNERABILITIES FOR MECHANICAL AND ELECTRONIC LOCKING SYSTEMS THAT ARE USED FOR PROTECTING CRITICAL ASSETS
CRITICAL FACILITIES

♦ TRANSPORTATION
 – AIRPORTS AND AIRPLANES
♦ FINANCIAL AND BANKING
♦ COMPUTRE SERVER CENTERS
♦ POWER GENERATION
♦ COMMUNICATIONS
♦ DEFENSE
♦ PUBLIC SAFETY
HIGH SECURITY FACILITIES: HIGHER THREAT LEVEL

♦ INTRUSION
♦ SABOTAGE and VANDALISM
♦ THEFT OF CRITICAL AND HIGH-VALUE ASSETS
♦ TERRORISM
♦ ACCESS TO INFORMATION
♦ IDENTITY THEFT
♦ INTERRUPTION OF CRITICAL ESSENTIAL SERVICES
LEGAL REQUIREMENTS: STATE, FEDERAL, REGULATORY

- FEDERAL STATUTES AND REGULATIONS
- STANDARDS COMPLIANCE
- COMMERCIAL AND INSURANCE
- DEFENSE DEPARTMENT
- DEPARTMENT OF ENERGY
- BANKING AND TREASURY
LOCKS: FIRST LINE OF DEFENSE

CONVENTIONAL AND HIGH SECURITY

♦ LOCKING SYSTEM: CATEGORIES
 – MECHANICAL
 – ELECTRO-MECHANICAL
 – ELECTRONIC

♦ TREND: PHYSICAL SECURITY + I-T

♦ RELIANCE ON STANDARDS BY MOST FACILITIES TO SELECT WHICH LOCKS ARE SECURE ENOUGH
STANDARDS: THE PROBLEM

♦ WHAT DO THEY MEASURE?
♦ WHY WE NEED STANDARDS
♦ NOT “REAL WORLD”
♦ LIMITED PROTOCOL, FEW TESTS
♦ MECHANICAL BYPASS
♦ SPECIAL ATTACK TECHNIQUES FOR CERTIFIED LOCKS
♦ LOCK BUMPING
♦ KNOWLEDGEABLE ATTACKS
LOCKS: SECURITY CRITERIA

♦ STANDARDS DEFINE CONVENTIONAL AND HIGH SECURITY

♦ THREAT CRITERIA
 – FORCED ENTRY
 – COVERT ENTRY
 – KEY CONTROL

♦ STANDARDS ARE BASED UPON:
 – TIME, TOOLS, TRAINING
FORCED ENTRY PROTECTION: UL 437 and BHMA 156.30 Standards

♦ LOCKS ARE SECURE AGAINST FORCED METHODS OF ATTACK

♦ MINIMUM TIMES SPECIFIED IN UL 437 and BHMA/ANSI 156.30
 – ATTACK RESISTANCE: 5 MINUTES

♦ DOES NOT INCLUDE MANY METHODS OF ATTACK
COVERT ENTRY PROTECTION: The Theory

- MINIMUM SECURITY CRITERIA IN UL 437 and BHMA/ANSI 156.30
- PROTECT AGAINST CERTAIN FORMS OF COVERT ENTRY
- ASSURE MINIMUM RESISTANCE TIMES TO OPEN: 10-15 Minutes
 - Picking, Decoding
 - Bumping (not covered)
 - Decoding and Master Key attacks
STANDARDS: KEY CONTROL v. KEY SECURITY

♦ STANDARDS = LIMITED SECURITY
♦ ORGANIZATIONAL PROTECTION
 – DUPLICATION OF KEYS
 – KEYS BY CODE ON ORDER
♦ LEGAL PROTECTION
 – AVAILABILITY OF BLANKS
♦ NOT ADDRESS TECHNICAL SECURITY OF KEYS
CATEGORIES OF LOCKS

♦ CONVENTIONAL MECHANICAL LOCKS
♦ HIGH SECURITY MECHANICAL LOCKS
♦ ELECTRONIC CREDENTIALS
 – ELECTRO-MECHANICAL LOCKS
 – ELECTRONIC LOCKS
 – WIRED, WIRELESS, DATA ON CARD
LOCKS AND SECURITY: CRITICAL QUESTIONS

♦ WHAT IS SECURITY RE LOCKS
♦ IS IT SECURE ENOUGH
♦ WHAT DOES A HIGH SECURITY RATING MEAN
♦ CONCEPT OF KEY CONTROL, KEY SECURITY, AND WHY IMPORTANT
♦ CAN THE LOCK BE COMPROMISED AND HOW DIFFICULT
♦ REAL WORLD THREATS
♦ METHODS TO COMPROMISE AND BREAK
CONVENTIONAL v. HIGH SECURITY LOCKS

♦ CONVENTIONAL CYLINDERS
 - Easy to pick and bump open
 - No key control
 - Limited forced entry resistance

♦ HIGH SECURITY CYLINDERS
 - UL and BHMA/ANSI Standards
 - UL 437 and BHMA/ANSI 156.30
 - Higher quality and tolerances
 - Resistance to Forced and Covert Entry
 - Key control
ALL MECHANICAL LOCKS: DESIGN LIMITATIONS

♦ GOOD FOR ONE PERSON, ONE KEY
♦ DON’T NEED TRACKING
♦ ADDING AND DELETING KEYS TO SYSTEM NOT AN ISSUE
♦ LOST, STOLEN OR COPIED KEYS, NO SECURITY
♦ MANIPULATION OF KEYS: MUL-T-LOCK AND KEY INTERCHANGE
CONVENTIONAL LOCKS: THEIR FUNCTION

♦ RESTRICT WHO CAN ENTER
♦ PREVENT OR DELAY UNAUTHORIZED ACCESS
 – LOW TO MEDIUM SECURITY
 – NOT CERTIFIED
 – COVERT ENTRY OFTEN EASY
CONVENTIONAL LOCK: MODERN PIN TUMBLER
CONVENTIONAL LOCKS: VULNERABILITIES

♦ PICKING, BUMPING, DECODING
♦ KEY JIGGLING
♦ IMPRESSIONING
♦ MASTER KEY EXTRAPOLATION
♦ MECHANICAL BYPASS
♦ FAILURE OF KEY CONTROL
 – DUPLICATION OF KEYS
 – SIMULATION OF KEYS
 – REPLICATION OF KEYS
CONVENTIONAL LOCKS: WHY THEY ARE NOT ADEQUATE

♦ NO TRACKING OF ACCESS, ATTEMPTS, HOW OFTEN, WHEN
♦ ADD AND DELETE KEYS
♦ KEY SECURITY
♦ MASTER KEY SYSTEM INSECURITY
♦ NO EVIDENCE OF BREACH
♦ NO INTELLIGENCE IN LOCK OR KEY
HIGH SECURITY LOCKS: INCREASED PROTECTION?

♦ Protect high value targets
♦ Stringent security requirements
♦ High security Standards: UL, BHMA
♦ Threat level is higher

♦ Minimum security criteria
 – Attack times and resistance
 – More difficult to compromise
 – Higher key control
HIGH SECURITY MECHANICAL LOCKS: PRIMARY FUNCTIONS

♦ RESTRICT ACCESS
♦ ADDED RESISTANCE TO FORCED, COVERT ENTRY, AND KEY CONTROL
♦ NO ABILITY TO:
 – TRACK PEOPLE AND THEIR ACCESS
 – TRACK ENTRY AND ATTEMPTS
 – CONTROL ACCESS BY TIME, DATE, USER GROUP
HIGH SECURITY LOCKS: Critical Design Differences

- Multiple security layers
- More than one point of failure
- Each security layer is independent
- Security layers operate in parallel
- Difficult to bypass each layer
- Difficult to derive intelligence about a layer
- Difficult to simulate the action of the key
MEDECO: WAS THE U.S. MODEL FOR HIGH SECURITY
MEDECO: WHO ARE THEY and WHY IMPORTANT?

♦ Dominant high security lock maker in U.S.
♦ Owns 70+ Percent of U.S. high security market for commercial and government
♦ Major government contracts
♦ In UK, France, Europe, South America
♦ Relied upon for highest security everywhere
♦ Considered almost invincible by experts
♦ Not easily compromised for 40 years
MEDECO HIGH SECURITY: What it is supposed to mean

♦ UL, BHMA/ANSI, Vd.S Certified
♦ High level of protection against attack
♦ Picking: 10-15 minute resistance
♦ No bumping
♦ Forced Entry: 5 minutes, minimum
♦ Key control
 – Protect restricted and proprietary keyways
 – Stop duplication, replication, simulation of keys
 – If keys can be replicated: no security
WHY THE MEDECO CASE STUDY IS IMPORTANT

♦ Insight into design of high security locks
♦ Patents are no assurance of security
♦ Appearance of security v. Real World
♦ Undue reliance on Standards
♦ Manufacturer knowledge and Representations
♦ Methodology of attack
♦ More secure lock designs
MEDECO LOCKS:
3 Independent Security Layers

♦ Layer 1: PIN TUMBLERS to shear line
♦ Layer 2: SIDEBAR: 3 angles x 2 positions
♦ Layer 3: SLIDER – 26 positions

♦ TO OPEN:
 – Lift the pins to shear line
 – Rotate each pin individually
 – Move the slider to correct position
MEDECO TWISTING PINS:
3 Angles + 2 Positions
PLUG AND SIDEBAR: All pins aligned
PLUG AND SIDEBAR: Locked
ELECTRONIC LOCKS: The Security Solution???
ELECTRO-MECHANICAL SELF-CONTAINED LOCKS

♦ MECHANICAL LOCKS +
♦ ELECTRONIC CREDENTIALS
 – STILL MECHANICAL LOCKS
♦ TWO PARALLEL LOCKING SYSTEMS
 – MECHANICALLY KEYED ALIKE
 – MECHANICALLY MASTER KEYED
 – KEY BITTING ASSIGNED TO EACH CUSTOMER
ELECTRONIC ACCESS CONTROL SYSTEMS

♦ MECHANICAL LOCK DESIGNS

♦ ELECTRONIC CREDENTIALS
 – I-BUTTON, RFID, SMART CARD
 – MANY DIFFERENT PROTOCOLS

♦ SECURITY LAYERS
 – PROTOCOL
 – MECHANICAL LOCKING SYSTEM
 – AUDIT FUNCTIONS
 – KEY SECURITY
MEDECO LOGIC CYLINDER: HIGHER SECURITY?
MEDECO LOGIC KEYS
MUL-T-LOCK CLIQ: SIMILAR TECHNOLOGY
EAC: CRITICAL APPLICATIONS IMPLEMENTATION EXAMPLES

- AVIATION
- CARGO
- POWER
- COMPUTER SERVERS AND DATA PROTECTION
CRITICAL INFRASTRUCTURE: AIRPORTS AND AIRCRAFT
CRITICAL INFRASTRUCTURE: AIRCRAFT
U.S. LAWS AFTER 9-11: TRANSPORTATION SECURITY

♦ AVIATION TRANSPORTATION SECURITY ACT (2001)

♦ SECURITY OF AIRPORTS, HIGHWAYS, BUSSSES, PORTS, MASS TRANSIT
 – CONTROL PHYSICAL ACCESS TO 450 AIRPORTS
 – CONTROL, TRACK, ANALYZE INDIVIDUAL ACCESS AND ATTEMPTS TO SECURE AREAS
AIRPORT SECURITY

♦ SECTION 106: AIRPORT PERIMITER PROTECTION
♦ SECURITY TECHNOLOGY TO MANAGE ACCESS CONTROL
♦ POSITIVELY VERIFY THE IDENTIFY OF EACH EMPLOYEE AND LAW ENFORCEMENT OFFICER
♦ TEST AND ASSURE COMPLIANCE
AIRPORT SECURITY

- LAYERED SECURITY APPROACH
- ACCESS CONTROL
- PHYSICAL SECURITY OF FIXED ASSETS
- BREACHES: TRACE TO LOCKS AND USER VIOLATIONS
- PREVENT COPYING OF KEYS
CONVENTIONAL LOCKS NOT SECURE FOR AIRPORT PROTECTION

♦ DUPLICATION OF KEYS OR CREDENTIALS
♦ NO AUDIT INFORMATION
♦ NO SCHEDULING OF PERSONNEL
♦ MASTER KEY SYSTEMS: NO IDENTIFICATION OF EMPLOYEE, NOR ABILITY TO TEST SYSTEM
PRIVATE AIRCRAFT: MEDECO CAM LOCKS
CRITICAL INFRASTRUCTURE: CARGO AREAS / CONTAINERS
CARGO ACCESS

♦ ELECTRONIC ACCESS CONTROL SYSTEMS

♦ ELECTRONIC PADLOCKS WITH AUDIT CONTROL
 – DETERMINE TAMPERING
 – TERRORIST ACTS
 – CONTRABAND
SECURITY REQUIREMENTS

♦ PREVENT ATTACKS, PHYSICAL AND ELECTRONIC

♦ ACCESS TO DATA AND EQUIPMENT
 – HARD ASSETS: GENERATING PLANTS, EQUIPMENT, TRANSMISSION, NETWORKS

♦ PHYSICAL ACCESS AND ATTEMPTS
PREVENT UNAUTHORIZED ACCESS

♦ TERRORISTS, DISGRUNTLED FORMER EMPLOYEES, TEENAGERS
♦ DISRUPTION OF LOCAL OR NATIONAL POWER AND TRANSMISSION
♦ REMOTE ACCESS AND SABOTAGE
♦ PROBLEM: LOCAL OR REMOTE ACCESS
CRITICAL INFRASTRUCTURE: COMPUTER SERVER ROOMS
SERVER SECURITY AND MECHANICAL LOCKS

♦ MECHANICAL LOCKS: WILL NOT PROTECT ELECTRONIC DATA

♦ NOT ENOUGH SECURITY TO ALLOW MANAGEMENT TO “ASSESS AND EVALUATE” INTERNAL CONTROLS

♦ REQUIRES A SYSTEM
 – RESTRICT ACCESS
 – TRACK PEOPLE ACCESS
 – ENTRY AND ATTEMPTS
PROTECTION OF FINANCIAL DATA: SPECIAL NEEDS

♦ SARBANES-OXLEY ACT (2002)
 - FINANCIAL REPORTING FOR PUBLIC CORPORATIONS
 - QUALITY OF FINANCIAL REPORTING
 - INTERNAL CONTROLS
 - SERVER ROOM ACCESS SECURITY

♦ SECURITY
 - FOR CORPORATION
 - FOR COMPLIANCE
 - FOR PUBLIC
SERVER SECURITY:
PHYSICAL ACCESS

- PHYSICAL SECURITY IS VITAL
- EQUIPMENT AND INFORMATION
- PREVENT SERVER THEFT
- MECHANICAL LOCKS NOT SUFFICIENT

♦ KEY CONTROL AND KEY SECURITY
♦ LOG ACCESS
♦ SERVER ROOM SECURITY BEGINS WITH CONTROLLING ACCESS TO FACILITY
FAILURE TO PROTECT SERVERS AND DATA

♦ THEFT OF PERSONAL DATA
♦ THEFT OF SERVERS AND COMPUTERS
♦ SIGNIFICANT LIABILITY TO ACCOUNT HOLDERS
♦ COMPROMISE OF CLASSIFIED DATA
FAILURE OF SECURITY: POSSIBLE RESULTS

♦ INTERRUPTION OF SERVICES
♦ SABOTAGE, UNAUTHORIZED ACCESS
♦ LOSS OF LIFE
♦ COMPROMISE OF CRITICAL DATA
♦ DESTRUCTION OF FACILITIES AND EVIDENCE
♦ TERROR ATTACKS
♦ EXTENSIVE LIABILITY
♦ CRIMINAL ACTIVITY, THEFT, COLLUSION
METHODS OF ATTACK: High Security Mechanical Locks

- Picking and manipulation of components
- Impressioning
- *Bumping
- *Vibration and shock
- *Shim wire decoding (Bluzmanis and Falle)
- *Borescope and Otoscope decoding
- *Direct or indirect measurement of critical locking components
- *Mechanical bypass
 - * Not covered by UL or BHMA standards
MEDECO INSECURITY: Real World Threats - Covert

♦ PICKING AND BUMPING
 – With correct blank and sidebar code
 – With simulated blank
 – With or without ARX pins

♦ INSIDE ATTACKS
 – Change key picking
 – Keymail

♦ MASTER KEY ATTACKS

♦ VISUAL DECODING
MEDECO BUMP KEY
REAL WORLD ATTACK:
Bumping a Medeco Lock
FEBRUARY, 2009: WIRED MAGAZINE BUMPING TEST
PICKING A MEDECO LOCK
MEDECO PICKING: OPEN IN 23 SECONDS
MEDECO INSECURITY: Real World Threats – Forced

- **DEADBOLT Pre-12/2007**
 - Thirty seconds
 - Complete circumvention of security
 - Simple tools, easy to accomplish

- **DEADBOLT 2008**
 - Reverse picking attack

- **MORTISE, RIM, ICORE**
 - Hybrid attack, compromise of key control
DEADBOLT ATTACK
MORTISE CYLINDER
SET THE SHEAR LINE: OPEN THE LOCK
SET THE SHEAR LINE

♦ PLASTIC KEY SETS SHEAR LINE
♦ SIDEBAR IS IRRELEVANT
MORTISE ATTACK
MEDECO MORTISE ATTACK: INSIDER KEY COMPROMISE
MEDECO m3: The Slider (2003)
M3 SLIDER: (Not secure) Bypass with a Paper clip
MEDECO INSECURITY: Real World Threats - Keys

♦ VIOLATION OF KEY CONTROL and KEY SECURITY

- Compromise of entire facility
- Improper generation of keys
- Use to open locks
- Decode Top Level Master Key
- Forced and covert entry techniques
KEYS and KEY CONTROL

♦ KEYS ARE THE EASIEST WAY TO OPEN LOCKS

- Change key or master key
- Duplicate correct bitting
- Bump keys
- Rights amplification: modify keys
KEY CONTROL: Why Most Keys are Vulnerable

♦ CONVENTIONAL LOCKS: Single Layer
 – KEYWAY = KEY CONTROL

♦ LEGAL PROTECTION DOES NOT PREVENT REAL WORLD ATTACKS
 – KEYS = BITTING HEIGHT + KEYWAY
 – Bypass the keyway
 – Raise pins to shear line
“KEYMAIL”: Security Threat from Within
KEYMAIL: How It Works

♦ ACCESS TO THE TARGET KEY
♦ CAPTURE AN IMAGE
♦ PRINT THE IMAGE
♦ PRODUCE A KEY
♦ OPEN THE LOCK
ACCESS TO TARGET KEY

♦ BORROW BRIEFLY
♦ AUTHORIZED POSSESSION
♦ AUTHORIZED USE
♦ COLLUSION WITH EMPLOYEE WHO HAS ACCESS TO A KEY
♦ PARKING VALET
CAPTURE AN IMAGE

- COPIER
- TRACE THE KEY
- CELL PHONE CAMERA
- SCANNER
→ OBTAIN DATA: COPIER OR SCANNER
OBTAIN DATA

♦ CELL PHONE
OBTAIN DATA:
BLACKBERRY CAMERA

♦ CAPTURED IMAGE
RESULTING IMAGE

REPRODUCE THE IMAGE

- On Paper
- On plastic sheet
- On Adhesive Labels
- On Shrinky dinks® plastic
- On a piece of copper wire
- On a simulated metal key
- On plastic credit card
CUT A FACSIMILE OF KEY

KEY REQUIREMENTS

- Vertical bitting only
- No sidebar data
- No slider data
HIGH SECURITY FACILITIES: CONVENTIONAL LOCKS

- CONVENTIONAL MECHANICAL LOCKS ARE NOT SUFFICIENT
OPEN THE LOCK: Replicate the Key in Plastic

MEDECO TAKES PLASTIC!
MEDECO SIMULATED KEYS: Replicate in metal
FAILURE OF KEY CONTROL: MEDECO TAKES PLASTIC
MECHANICAL LOCKS: NOT ENOUGH PROTECTION

♦ LIMITATIONS

– GOOD FOR ONE PERSON, ONE KEY
– WHERE DON’T NEED TRACKING
– ADD DELETE KEYS NOT AN ISSUE
– LOST KEYS
– COPIED OR STOLEN KEYS
ELECTRONIC ACCESS CONTROL: HIGHER SECURITY SOLUTION?

♦ THE ANSWER TO MECHANICAL LOCKS?

♦ CURRENT SYSTEMS
 – MECHANICAL + ELECTRONIC
 – ALL ELECTRONIC
 • WIRED
 • DATA ON CARD
 • WIRELESS
MUL-T-LOCK CLIQ ADVERTISING
STAND-ALONE EAC: ASSA ABLOY CLIQ TECHNOLOGY

♦ MUL-T-LOCK, IKON, ASSA, MEDECO LOGIC = SAME TECHNOLOGY

♦ SYSTEM DESIGN

♦ ELECTROMECHANICAL STAND-ALONE CYLINDERS

♦ MECHANICAL LOCKING + AUDIT

♦ ENHANCED CONTROL OPTIONS

♦ USED THROUGHOUT THE WORLD
LOGIC AND CLIQ LOCKS: DESIGN ATTRIBUTES

♦ PROGRAM PERMISSIONS
♦ AUTHORIZED KEYS
♦ AUDIT TRAIL EVENTS
♦ MECHANICAL + ELECTRONIC SECURITY
♦ NO WIRING OR ADDED HARDWARE
CLIQ AND LOGIC HARDWARE: STATED ADVANTAGES?

♦ KEY POWERS THE LOCK
♦ MECHANICAL BITTING + CREDENTIALS
♦ EASY RETROFIT TO EXISTING LOCKS
♦ ADD-DELETE KEYS
♦ WIDE RANGE OF ACCESS CONTROLS: TIME, DATE, DOOR CONTROL
LOGIC AND CLIQ KEYS: STATED ADVANTAGES?

- MECHANICAL AND ELECTRONIC KEYS
- PATENTED KEY CONTROL
- REVERSIBLE KEY
- 1000 AUDIT EVENTS
ASSA ABLOY EAC: SECURITY AND REALITY

♦ KEY CONTROL
 - SIMULATION OF KEYS
 - LOST, STOLEN, DELETED KEYS
 - ENTIRE SYSTEM AT RISK
 - CANNOT RE-KEY CYLINDERS

♦ SIMULATE CREDENTIALS

♦ BYPASS ALL AUDIT FUNCTIONS
SOME EAC LOCKS: SERIOUS SECURITY ISSUES

♦ FALSE SENSE OF SECURITY
♦ FALSE BLAME OF EMPLOYEES
♦ NO EVIDENCE OF ENTRY FOR SECRET INFORMATION
♦ SECRETS COMPROMISED
♦ EVIDENCE: CHAIN OF CUSTODY AND LEGAL CHALLENGES
POTENTIAL SECURITY VULNERABILITIES?

♦ BYPASS OF MECHANICAL OR ELECTRONIC SYSTEM

♦ AUDIT TRAIL DEPENDS ON READING THE KEY

♦ WHAT IF ONE LAYER IS BYPASSED

♦ RF-BASED SYSTEMS: DoS ATTACKS

♦ LOSS OF KEYS

♦ LEGAL ISSUES: AUDIT TRAILS
ELECTRO-MECHANICAL EAC LOCKS

- MECHANICAL LOCKS + ELECTRONIC CREDENTIALS
- STILL MECHANICAL LOCKS
- BYPASS TECHNIQUES AVAILABLE
MAGNETIC ATTACK:
UHLMANN and ZACHER

Uhlmann & Zacher
Security Issue

Product mainly distributed by:
Häfele, Dorma, Primion
and others...
CLIQ AND LOGIC SECURITY
ISSUES: KEYS

♦ MECHANICAL KEYS
♦ WAFER OR PIN TUMBLER SYSTEM
♦ OFTEN KEYED ALIKE SYSTEMS
 – KEYS ONLY CUT AT FACTORY
 – ELECTRONIC TECHNOLOGY IN KEY
♦ RESULTS IF KEYED ALIKE OR CAN DUPLICATE KEYS (MUL-T-LOCK)
MUL-T-LOCK CLIQ AND MAGNETS
CLIQ AND MAGNETIC RING
CLIQ AND LOGIC SECURITY: SIMULATE CREDENTIALS

♦ SECURITY OF SYSTEM: MECHANICAL KEYS + ELECTRONIC CREDENTIALS

♦ QUESTION: POSSESS KEY AND SIMULATE OR BYPASS CREDENTIALS

♦ ONE LOST KEY: COMPROMISE ENTIRE SYSTEM
SECURITY AND AUDIT TRAILS

♦ BYPASS AUDIT TRAIL: AUDIT TRAIL IS DEPENDENT UPON READING THE KEY OR LOCK

♦ IF THERE IS NO AUDIT TRAIL:
 ♦ FALSE BLAME
 ♦ FALSE SENSE OF SECURITY
 ♦ UNKNOWN COMPROMISE
 ♦ NO EVIDENCE OF ENTRY
MEDECO: “UNAUTHORIZED KEY COPYING IS REMOVED FROM THE EQUATION” “SUPERIOR PROTECTION AGAINST UNAUTHORIZED KEY COPYING”
CLIQ, LOGIC, NEXGEN

POTENTIAL ISSUES

♦ PRELIMINARY RESEARCH
 - ONE KEY LOST, STOLEN, DELETED MAY COMPROMISE ENTIRE SYSTEM
 - SIMULATE CREDENTIALS
 - OPEN IN 30 SECONDS OR LESS
 - NO AUDIT TRAIL
 - SIMULATION OF KEYS
MEDECO LOGIC BYPASS
LOGIC INSECURITY: SIMULATED KEYS
LOGIC COMPROMISE: SIMULATE ELECTRONICS
CLIQ COMPROMISE
ALL EAC SYSTEMS: CRITICAL ASSESSMENT

♦ MECHANICAL LOCKING SYSTEM
♦ MECHANICAL BYPASS
♦ KEYING SCHEMES
♦ BYPASS OF ELECTRONICS
♦ SIMULATE CREDENTIALS
♦ CLONE CREDENTIALS
OPEN IN THIRTY SECONDS: Cracking one of the most secure locks in America

© 2009 Marc Weber Tobias and Tobias Bluzmanis

www.security.org

mwtobias@security.org