LOCKS AND HIGH INSECURITY: PROTECTING CRITICAL INFRASTRUCTURE

SECURITY VULNERABILITIES FOR MECHANICAL AND ELECTRONIC LOCKING SYSTEMS THAT ARE USED FOR PROTECTING CRITICAL ASSETS

CRITICAL FACILITIES

- ◆ TRANSPORTATION
 - AIRPORTS AND AIRPLANES
- ◆ FINANCIAL AND BANKING
- ◆ COMPUTRE SERVER CENTERS
- POWER GENERATION
- **♦** COMMUNICATIONS
- DEFENSE
- PUBLIC SAFETY

HIGH SECURITY FACILITIES: HIGHER THREAT LEVEL

- **♦ INTRUSION**
- ◆ SABOTAGE and VANDALISM
- THEFT OF CRITICAL AND HIGH-VALUE ASSETS
- **♦** TERRORISM
- ACCESS TO INFORMATION
- IDENTITY THEFT
- ◆ INTERRUPTION OF CRITICAL ESSENTIAL SERVICES

LEGAL REQUIREMENTS: STATE, FEDERAL, REGULATORY

- ♦ FEDERAL STATUTES AND REGULATIONS
- ◆ STANDARDS COMPLIANCE
- ◆ COMMERCIAL AND INSURANCE
- ◆ DEFENSE DEPARTMENT
- DEPARTMENT OF ENERGY
- ♦ BANKING AND TREASURY

LOCKS: FIRST LINE OF DEFENSE

CONVENTIONAL AND HIGH SECURITY

- **♦** LOCKING SYSTEM: CATEGORIES
 - MECHANICAL
 - ELECTRO-MECHANICAL
 - ELECTRONIC
- ♦ TREND: PHYSICAL SECURITY + I-T
- ◆ RELIANCE ON STANDARDS BY MOST FACILITIES TO SELECT WHICH LOCKS ARE SECURE ENOJUGH

STANDARDS: THE PROBLEM

- ♦ WHAT DO THEY MEASURE?
- ♦ WHY WE NEED STANDARDS
- ♦ NOT "REAL WORLD"
- ◆ LIMITED PROTOCOL, FEW TESTS
- ◆ MECHANICAL BYPASS
- ◆ SPECIAL ATTACK TECHNIQUES FOR CERTIFIED LOCKS
- **♦** LOCK BUMPING
- ◆ KNOWLEDGEABLE ATTACKS

LOCKS: SECURITY CRITERIA

- ◆ STANDARDS DEFINE
 CONVENTIONAL AND HIGH
 SECURITY
- **♦ THREAT CRITERIA**
 - FORCED ENTRY
 - COVERT ENTRY
 - KEY CONTROL
- STANDARDS ARE BASED UPON:
 - TIME, TOOLS, TRAINING

FORCED ENTRY PROTECTION: UL 437 and BHMA 156.30 Standards

- ◆ LOCKS ARE SECURE AGAINST FORCED METHODS OF ATTACK
- MINIMUM TIMES SPECIFIED IN UL
 437 and BHMA/ANSI 156.30
 - ATTACK RESISTANCE: 5 MINUTES
- DOES NOT INCLUDE MANY METHODS OF ATTACK

COVERT ENTRY PROTECTION: The Theory

- MINIMUM SECURITY CRITERIA IN UL 437 and BHMA/ANSI 156.30
- PROTECT AGAINST CERTAIN FORMS
 OF COVERT ENTRY
- ◆ ASSURE MINIMUM RESISTANCE TIMES TO OPEN: 10-15 Minutes
 - Picking, Decoding
 - Bumping (not covered)
 - Decoding and Master Key attacks

STANDARDS: KEY CONTROL v. KEY SECURITY

- ◆ STANDARDS = LIMITED SECURITY
- ◆ ORGANIZATIONAL PROTECTION
 - DUPLICATION OF KEYS
 - KEYS BY CODE ON ORDER
- **♦** LEGAL PROTECTION
 - AVAILABILITY OF BLANKS
- NOT ADDRESS TECHNICAL
 SECURITY OF KEYS

CATEGORIES OF LOCKS

- CONVENTIONAL MECHANICAL LOCKS
- HIGH SECURITY MECHANICAL LOCKS
- ♦ ELECTRONIC CREDENTIALS
 - ELECTRO-MECHANICAL LOCKS
 - ELECTRONIC LOCKS
 - WIRED, WIRELESS, DATA ON CARD

LOCKS AND SECURITY: CRITICAL QUESTIONS

- ♦ WHAT IS SECURITY RE LOCKS
- ♦ IS IT SECURE ENOUGH
- WHAT DOES A HIGH SECURITY RATING MEAN
- ◆ CONCEPT OF KEY CONTROL, KEY SECURITY, AND WHY IMPORTANT
- ◆ CAN THE LOCK BE COMPROMISED AND HOW DIFFICULT
- ♦ REAL WORLD THREATS
- ◆ METHODS TO COMPROMISE AND BREAK

CONVENTIONAL v. HIGH SECURITY LOCKS

- CONVENTIONAL CYLINDERS
 - Easy to pick and bump open
 - No key control
 - Limited forced entry resistance

HIGH SECURITY CYLINDERS

- UL and BHMA/ANSI Standards
 - UL 437 and BHMA/ANSI 156.30
- Higher quality and tolerances
- Resistance to Forced and Covert Entry
- Key control

ALL MECHANICAL LOCKS: DESIGN LIMITATIONS

- ♦ GOOD FOR ONE PERSON, ONE KEY
- ◆ DON'T NEED TRACKING
- ADDING AND DELETING KEYS TO SYSTEM NOT AN ISSUE
- ◆ LOST, STOLEN OR COPIED KEYS, NO SECURITY
- MANIPULAITON OF KEYS: MUL-T-LOCK AND KEY INTERCHANGE

CONVENTIONAL LOCKS: THEIR FUNCTION

- ◆ RESTRICT WHO CAN ENTER
- PREVENT OR DELAY
 UNAUTHORIZED ACCESS
 - LOW TO MEDIUM SECURITY
 - NOT CERTIFIED
 - COVERT ENTRY OFTEN EASY

CONVENTIONAL LOCK: MODERN PIN TUMBLER

CONVENTIONAL LOCKS: VULNERABILITIES

- ♦ PICKING, BUMPING, DECODING
- ♦ KEY JIGGLING
- **♦** IMPRESSIONING
- MASTER KEY EXTRAPOLATION
- ◆ MECHANICAL BYPASS
- ◆ FAILURE OF KEY CONTROL
 - DUPLICATION OF KEYS
 - SIMULATION OF KEYS
 - REPLICATION OF KEYS

CONVENTIONAL LOCKS: WHY THEY ARE NOT ADEQUATE

- NO TRACKING OF ACCESS,
 ATTEMPTS, HOW OFTEN, WHEN
- ADD AND DELTE KEYS
- ♦ KEY SECURITY
- ◆ MASTER KEY SYSTEM INSECURITY
- NO EVIDENCE OF BREACH
- ◆ NO INTELLIGENCE IN LOCK OR KEY

HIGH SECURITY LOCKS: INCREASED PROTECTION?

- Protect high value targets
- Stringent security requirements
- ♦ High security Standards: UL, BHMA
- ◆ Threat level is higher
- Minimum security criteria
 - Attack times and resistance
 - More difficult to compromise
 - Higher key control

HIGH SECURITY MECHANICAL LOCKS: PRIMARY FUNCTIONS

- ◆ RESTRICT ACCESS
- ADDED RESISTANCE TO FORCED,
 COVERT ENTRY, AND KEY CONTROL
- ♦ NO ABILITY TO:
 - TRACK PEOPLE AND THEIR ACCESS
 - TRACK ENTRY AND ATTEMPTS
 - CONTROL ACCESS BY TIME, DATE, USER GROUP

HIGH SECURITY LOCKS: Critical Design Differences

- Multiple security layers
- ♦ More than one point of failure
- Each security layer is independent
- Security layers operate in parallel
- Difficult to bypass each layer
- ♦ Difficult to derive intelligence about a layer
- ◆ Difficult to simulate the action of the key

MEDECO: WAS THE U.S. MODEL FOR HIGH ECURITY

MEDECO: WHO ARE THEY and WHY IMPORTANT?

- ♦ Dominant high security lock maker in U.S.
- ♦ Owns 70+ Percent of U.S. high security market for commercial and government
- Major government contracts
- ♦ In UK, France, Europe, South America
- Relied upon for highest security everywhere
- Considered almost invincible by experts
- ◆ Not easily compromised for 40 years

MEDECO HIGH SECURITY: What it is supposed to mean

- ♦ UL, BHMA/ANSI, Vd.S Certified
- ♦ High level of protection against attack
- ♦ Picking: 10-15 minute resistance
- ♦ No bumping
- ♦ Forced Entry: 5 minutes, minimum
- Key control
 - Protect restricted and proprietary keyways
 - Stop duplication, replication, simulation of keys
 - If keys can be replicated: no security

WHY THE MEDECO CASE STUDY IS IMPORTANT

- ♦ Insight into design of high security locks
- ♦ Patents are no assurance of security
- ♦ Appearance of security v. Real World
- ◆ Undue reliance on Standards
- Manufacturer knowledge and Representations
- Methodology of attack
- ♦ More secure lock designs

MEDECO LOCKS:

- 3 Independent Security Layers
- ♦ Layer 1: PIN TUMBLERS to shear line
- ♦ Layer 2: SIDEBAR: 3 angles x 2 positions
- ♦ Layer 3: SLIDER 26 positions
- ◆ TO OPEN:
 - Lift the pins to shear line
 - Rotate each pin individually
 - Move the slider to correct position

MEDECO TWISTING PINS: 3 Angles + 2 Positions

MEDECO BIAXIAL (1985-2003)

PLUG AND SIDEBAR: All pins aligned

PLUG AND SIDEBAR: Locked

ELECTRONIC LOCKS: The Security Solution???

ELECTRO-MECHANICAL SELF-CONTAINED LOCKS

- ◆ MECHANICAL LOCKS +
- **♦** ELECTRONIC CREDENTIALS
 - STILL MECHANICAL LOCKS
- ◆ TWO PARALLEL LOCKING SYSTEMS
 - MECHANICALLY KEYED ALIKE
 - MECHANICALLY MASTER KEYED
 - KEY BITTING ASSIGNED TO EACH CUSTOMER

ELECTRONIC ACCESS CONTROL SYSTEMS

- ◆ MECHANICAL LOCK DESIGNS
- ♦ ELECTRONIC CREDENTIALS
 - I-BUTTON, RFID, SMART CARD
 - MANY DIFFERENT PROTOCOLS
- **♦** SECURITY LAYERS
 - PROTOCOL
 - MECHANICAL LOCKING SYSTEM
 - AUDIT FUNCTIONS
 - KEY SECURITY

MEDECO LOGIC CYLINDER: HIGHER SECURITY?

MEDECO LOGIC KEYS

MUL-T-LOCK CLIQ: SIMILAR TECHNOLOGY

EAC: CRITICAL APPLICATIONS IMPLEMENTATION EXAMPLES

- ◆ AVIATION
- ◆ CARGO
- ◆ POWER
- COMPUTER SERVERS AND DATA PROTECTION

CRITICAL INFRASTRUCTURE: AIRPORTS AND AIRCRAFT

CRITICAL INFRASTRUCTURE: AIRCRAFT

U.S. LAWS AFTER 9-11: TRANSPORTATION SECURITY

- ◆ AVIATION TRANSPORTATION SECURITY ACT (2001)
- SECURITY OF AIRPORTS, HIGHWAYS, BUSSES, PORTS, MASS TRANSIT
 - CONTROL PHYSICAL ACCESS TO 450 AIRPORTS
 - CONTROL, TRACK, ANALYZE
 INDIVIDUAL ACCESS AND ATTEMPTS
 TO SECURE AREAS

AIRPORT SECURITY

- ◆ SECTION 106: AIRPORT PERIMITER PROTECTION
- ◆ SECURITY TECHNOLOGY TO MANAGE ACCESS CONTROL
- ◆ POSTIVIELY VERIFY THE IDENTIFY OF EACH EMPLOYEE AND LAW ENFORCEMENT OFFICER
- ◆ TEST AND ASSURE COMPLIANCE

AIRPORT SECURITY

- **♦ LAYERED SECURITY APPROACH**
- ♦ ACCESS CONTROL
- ◆ PHYSICAL SECURITY OF FIXED ASSETS
- ◆ BREACHES: TRACE TO LOCKS AND USER VIOLAITONS
- ◆ PREVENT COPYING OF KEYS

CONVENTIONAL LOCKS NOT SECURE FOR AIRPORT PROTECTION

- DUPLICATION OF KEYS OR CREDENTIALS
- ◆ NO AUDIT INFORMATION
- ◆ NO SECHEDULING OF PERSONNEL
- ◆ MASTER KEY SYSTEMS: NO IDENTIFICATION OF EMPLOYEE, NOR ABILITY TO TEST SYSTEM

PRIVATE AIRCRAFT: MEDECO CAM LOCKS

CRITICAL INFRASTRUCTURE: CARGO AREAS / CONTAINERS

CARGO ACCESS

- ♦ ELECTRONIC ACCESS CONTROL SYSTEMS
- ELECTRONIC PADLOCKS WITH AUDIT CONTROL
 - DETERMINE TAMPERING
 - TERRORIST ACTS
 - CONTRABAND

MEDECO NEXGEN

CRITICAL INFRASTRUCTURE: POWER GENERATION

SECURITY REQUREMENTS

- PREVENT ATTACKS, PHYSICAL AND ELECTRONIC
- ACCESS TO DATA AND EQUIPMENT
 - HARD ASSETS: GENERATING PLANTS, EQUIPMENT, TRANSMISSION, NETWORKS
- ◆ PHYSICAL ACCESS AND ATTEMPTS

PREVENT UNAUTHORIZED ACCESS

- ♦ TERRORISTS, DISGRUNTLED FORMER EMPLOYEES, TEENAGERS
- ◆ DISRUPTION OF LOCAL OR NATIONAL POWER AND TRANSMISSION
- ◆ REMOTE ACCESS AND SABOTAGE
- PROBLEM: LOCAL OR REMOTE ACCESS

CRITICAL INFRASTRUCTURE: COMPUTER SERVER ROOMS

SERVER SECURITY AND MECHANICAL LOCKS

- ◆ MECHANICAL LOCKS: WILL NOT PROTECT ELECTRONIC DATA
- NOT ENOUGH SECURITY TO ALLOW MANAGEMENT TO "ASSESS AND EVALUATE" INTERNAL CONTROLS
- ◆ REQUIRES A SYSTEM
 - RESTRICT ACCESS
 - TRACK PEOPLE ACCESS
 - ENTRY AND ATTEMPTS

PROTECTION OF FINANCIAL DATA: SPECIAL NEEDS

- ♦ SARBANES-OXLEY ACT (2002)
 - FINANCIAL REPORTING FOR PUBLIC CORPORATIONS
 - QUALITY OF FINANCIAL REPORTING
 - INTERNAL CONTROLS
 - SERVER ROOM ACCESS SECURITY
- **♦** SECURITY
 - FOR CORPORATION
 - FOR COMPLIANCE
 - FOR PUBLIC

SERVER SECURITY: PHYSICAL ACCESS

- PHYSICAL SECURITY IS VITAL
- EQUIPMENT AND INFORMATION
- PREVENT SERVER THEFT
- MECHANICAL LOCKS NOT SUFFICIENT
- ♦ KEY CONTROL AND KEY SECURITY
- **♦ LOG ACCESS**
- ◆ SERVER ROOM SECURITY BEGINS WITH CONTROLLING ACCESS TO FACILITY

FAILURE TO PROTECT SERVERS AND DATA

- ♦ THEFT OF PERSONAL DATA
- ◆ THEFT OF SERVERS AND COMPUTERS
- ◆ SIGNIFICANT LIABILITY TO ACCOUNT HOLDERS
- ◆ COMPROMISE OF CLASSIFIED DATA

FAILURE OF SECURITY: POSSIBLE RESULTS

- **♦ INTERRUPTION OF SERVICES**
- ♦ SABOTAGE, UNAUTHORIZED ACCESS
- ♦ LOSS OF LIFE
- ♦ COMPROMISE OF CRITICAL DATA
- ◆ DESTRUCTION OF FACILITIES AND EVIDENCE
- ◆ TERROR ATTCKS
- ♦ EXTENSIVE LIABILITY
- ◆ CRIMINAL ACTIVITY, THEFT, COLLUSION

METHODS OF ATTACK: High Security Mechanical Locks

- Picking and manipulation of components
- Impressioning
- *Bumping
- *Vibration and shock
- *Shim wire decoding (Bluzmanis and Falle)
- *Borescope and Otoscope decoding
- *Direct or indirect measurement of critical locking components
- *Mechanical bypass
 - * Not covered by UL or BHMA standards

MEDECO INSECURITY: Real World Threats - Covert

- PICKING AND BUMPING
 - With correct blank and sidebar code
 - With simulated blank
 - With or without ARX pins
- ♦ INSIDE ATTACKS
 - Change key picking
 - Keymail
- ◆ MASTER KEY ATTACKS
- ♦ VISUAL DECODING

MEDECO BUMP KEY

REAL WORLD ATTACK: Bumping a Medeco Lock

FEBRUARY, 2009: WIRED MAGAZINE BUMPING TEST

PICKING A MEDECO LOCK

MEDECO PICKING: OPEN IN 23 SECONDS

MEDECO INSECURITY: Real World Threats – Forced

- ◆ DEADBOLT Pre-12/2007
 - Thirty seconds
 - Complete circumvention of security
 - Simple tools, easy to accomplish
- ◆ DEADBOLT 2008
 - Reverse picking attack
- ♦ MORTISE, RIM, ICORE
 - Hybrid attack, compromise of key control

DEADBOLT ATTACK

MORTISE CYLINDER

SET THE SHEAR LINE: OPEN THE LOCK

SET THE SHEAR LINE

◆ PLASTIC KEY SETS SHEAR LINE

◆ SIDEBAR IS IRRELEVANT

MORTISE ATTACK

MEDECO MORTISE ATTACK: INSIDER KEY COMPROMISE

MEDECO m3: The Slider (2003)

M3 SLIDER: (Not secure) Bypass with a Paper clip

MEDECO INSECURITY: Real World Threats - Keys

- VIOLATION OF KEY CONTROL and KEY SECURITY
 - Compromise of entire facility
 - Improper generation of keys
 - Use to open locks
 - Decode Top Level Master Key
 - Forced and covert entry techniques

KEYS and KEY CONTROL

- KEYS ARE THE EASIEST WAY TO OPEN LOCKS
 - Change key or master key
 - Duplicate correct bitting
 - Bump keys
 - Rights amplification: modify keys

KEY CONTROL: Why Most Keys are Vulnerable

- ♦ CONVENTIONAL LOCKS: Single Layer
 - KEYWAY = KEY CONTROL
- ◆ LEGAL PROTECTION DOES NOT PREVENT REAL WORLD ATTACKS
 - KEYS = BITTING HEIGHT + KEYWAY
 - Bypass the keyway
 - Raise pins to shear line

"KEYMAIL": Security Threat from Within

KEYMAIL: How It Works

- ◆ ACCESS TO THE TARGET KEY
- ◆ CAPTURE AN IMAGE
- ♦ PRINT THE IMAGE
- ◆ PRODUCE A KEY
- ♦ OPEN THE LOCK

→ ACCESS TO TARGET KEY

- ♦ BORROW BRIEFLY
- **♦ AUTHORIZED POSSESSION**
- AUTHORIZED USE
- ◆ COLLUSION WITH EMPLOYEE WHO HAS ACCESS TO A KEY
- PARKING VALET

→ CAPTURE AN IMAGE

- ◆ COPIER
- ◆ TRACE THE KEY
- ◆ CELL PHONE CAMERA
- **♦** SCANNER

→ OBTAIN DATA: COPIER OR SCANNER

OBTAIN DATA

◆ CELL PHONE

OBTAIN DATA: BLACKBERRY CAMERA

◆ CAPTURED IMAGE

→ RESULTING IMAGE

◆ REPRODUCE THE IMAGE

- On Paper
- On plastic sheet
- On Adhesive Labels
- On Shrinky dinks® plastic
- On a piece of copper wire
- On a simulated metal key
- On plastic credit card

→ CUT A FACSIMILE OF KEY

♦ KEY REQUIREMENTS

- Vertical bitting only
- No sidebar data
- No slider data

HIGH SECURITY FACILITIES: CONVENTIONAL LOCKS

◆ CONVENTIONAL MECHANICAL LOCKS ARE NOT SUFFICIENT

→ OPEN THE LOCK: Replicate the Key in Plastic

♦ MEDECO TAKES PLASTIC!

MEDECO SIMULATED KEYS:

FAILURE OF KEY CONTROL: MEDECO TAKES PLASTIC

MECHANICAL LOCKS: NOT ENOUGH PROTECTION

- **♦ LIMITATIONS**
 - GOOD FOR ONE PERSON, ONE KEY
 - WHERE DON'T NEED TRACKING
 - ADD DELETE KEYS NOT AN ISSUE
 - LOST KEYS
 - COPIED OR STOLEN KEYS

ELECTRONIC ACCESS CONTROL: HIGHER SECURITY SOLUTION?

- ♦ THE ANSWER TO MECHANICAL LOCKS?
- CURRENT SYSTEMS
 - MECHANICAL + ELECTRONIC
 - ALL ELECTRONIC
 - WIRED
 - DATA ON CARD
 - WIRELESS

MUL-T-LOCK CLIQ ADVERTISING

STAND-ALONE EAC: ASSA ABLOY CLIQ TECHNOLOGY

- ♦ MUL-T-LOCK, IKON, ASSA, MEDECO LOGIC = SAME TECHNOLOGY
- ♦ SYSTEM DESIGN
- ◆ ELECTROMECHANICAL STAND-ALONE CYLINDERS
- ◆ MECHANICAL LOCKING + AUDIT
- ♦ ENHANCED CONTROL OPTIONS
- ◆ USED THROUGHOUT THE WORLD

LOGIC AND CLIQ LOCKS: DESIGN ATTRIBUTES

- ◆ PROGRAM PERMISSIONS
- AUTHORIZED KEYS
- AUDIT TRAIL EVENTS
- ◆ MECHANICAL+ ELECTRONIC SECURITY
- ◆ NO WIRING OR ADDED HARDWARE

CLIQ AND LOGIC HARDWARE: STATED ADVANTAGES?

- ♦ KEY POWERS THE LOCK
- ◆ MECHANICAL BITTING + CREDENTIALS
- ◆ EASY RETROFIT TO EXISTING LOCKS
- ADD-DELETE KEYS
- ◆ WIDE RANGE OF ACCESS CONTROLS: TIME, DATE, DOOR CONTROL

LOGIC AND CLIQ KEYS: STATED ADVANTAGES?

- MECHANICAL AND ELECTRONIC KEYS
- ◆ PATENTED KEY CONTROL
- ♦ REVERSIBLE KEY
- ◆ 1000 AUDIT EVENTS

ASSA ABLOY EAC: SECURITY AND REALITY

- ♦ KEY CONTROL
 - SIMULATION OF KEYS
 - LOST, STOLEN, DELETED KEYS
 - ENTIRE SYSTEM AT RISK
 - CANNOT RE-KEY CYLINDERS
- SIMULATE CREDENTIALS
- ♦ BYPASS ALL AUDIT FUNCTIONS

SOME EAC LOCKS: SERIOUS SECURITY ISSUES

- ♦ FALSE SENSE OF SECURITY
- ♦ FALSE BLAME OF EMPLOYEES
- NO EVIDENCE OF ENTRY FOR SECRET INFORMATION
- ◆ SECRETS COMPROMISED
- ◆ EVIDENCE: CHAIN OF CUSTODY AND LEGAL CHALLENGES

POTENTIAL SECURITY VULNERABILITIES?

- BYPASS OF MECHANICAL OR ELECTRONIC SYSTEM
- AUDIT TRAIL DEPENDS ON READING THE KEY
- ♦ WHAT IF ONE LAYER IS BYPASSED
- ◆ RF-BASED SYSTEMS: DoS ATTACKS
- ◆ LOSS OF KEYS
- ♦ LEGAL ISSUES: AUDIT TRAILS

ELECTRO-MECHANICAL EAC LOCKS

- ♦ MECHANICAL LOCKS +ELECTRONIC CREDENTIALS
- ◆ STILL MECHANICAL LOCKS
- ♦ BYPASS TECHNIQUES AVAILABLE

MAGNETIC ATTACK: UHLMANN and ZACHER

Uhlmann & Zacher Security Issue

Product mainly distributed by:

Häfele, Dorma, Primion and others...

CLIQ AND LOGIC SECURITY ISSUES: KEYS

- ◆ MECHANICAL KEYS
- ♦ WAFER OR PIN TUMBLER SYSTEM
- OFTEN KEYED ALIKE SYSTEMS
 - KEYS ONLY CUT AT FACTORY
 - ELECTRONIC TECHNOLOGY IN KEY
- ◆ RESULTS IF KEYED ALIKE OR CAN DUPLICATE KEYS (MUL-T-LOCK)

MUL-T-LOCK CLIQ AND MAGNETS

CLIQ AND MAGNETIC RING

CLIQ AND LOGIC SECURITY: SIMULATE CREDENTIALS

- ◆ SECURITY OF SYSTEM: MECHANICAL KEYS + ELECTRONIC CREDENTIALS
- QUESTION: POSSESS KEY AND SIMULATE OR BYPASS CREDENTIALS
- ◆ ONE LOST KEY: COMPROMISE ENTIRE SYSTEM

SECURITY AND AUDIT TRAILS

- ◆ BYPASS AUDIT TRAIL: AUDIT TRAIL IS DEPENDENT UPON READING THE KEY OR LOCK
- ♦ IF THERE IS NO AUDIT TRAIL:
- ◆ FALSE BLAME
- ♦ FALSE SENSE OF SECURITY
- **♦ UNKNOWN COMPROMISE**
- NO EVIDENCE OF ENTRY

CLIQ AND LOGIC SECURITY

◆ MEDECO: "UNAUTHORIZED KEY COPYING IS REMOVED FROM THE **EQUATION" "SUPERIOR PROTECTION** AGAINST UNAUTHORIZED KEY

COPYING"

CLIQ, LOGIC, NEXGEN POTENTIAL ISSUES

- ◆ PRELIMINARY RESEARCH
 - ONE KEY LOST, STOLEN, DELETED MAY COMPRIMSE ENTIRE SYSTEM
 - SIMULATE CREDENTIALS
 - OPEN IN 30 SECONDS OR LESS
 - NO AUDIT TRAIL
 - SIMULATION OF KEYS

MEDECO LOGIC BYPASS

LOGIC INSECURITY: SIMULATED KEYS

LOGIC COMPROMISE: SIMULATE ELECTRONICS

CLIQ COMPROMISE

MEDECO NEXGEN

Security.Org

ALL EAC SYSTEMS: CRITICAL ASSESSMENT

- ◆ MECHANICAL LOCKING SYSTEM
- ◆ MECHANICAL BYPASS
- ♦ KEYING SCHEMES
- ♦ BYPASS OF ELECTRONICS
- **♦ SIMULATE CREDENTIALS**
- **♦ CLONE CREDENTIALS**

OPEN IN THIRTY SECONDS: Cracking one of the most secure locks in America

© 2009 Marc Weber Tobias and

Tobias Bluzmanis

www.security.org

mwtobias@security.org